본문 바로가기

분류 전체보기14

[논문 리뷰] Flamingo: A Visual Language Model for Few-Shot Learning Paper Details Title: Flamingo: A Visual Language Model for Few-Shot Learning Authors: Jean-Baptiste Alayrac*, Jeff Donahue*, Pauline Luc*, Antoine Miech*, Iain Barr†, Yana Hasson†, Karel Lenc†, Arthur Mensch†, Katie Millican†, Malcolm Reynolds†, Roman Ring†, Eliza Rutherford†, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock.. 2024. 12. 23.
[논문 리뷰] Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks Paper DetailsTitle: Retrieval-Augmented Generation for Knowledge-Intensive NLP TasksAuthors: Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe KielaConference: Facebook AI Research, University College London, New York UniversityYear of Publication: 2021Link: https://ar.. 2024. 12. 16.
[논문 리뷰] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation Paper DetailsTitle: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation Authors: Fausto Milletari, Nassir Navab, Seyed-Ahmad Ahmadi Conference: Medical Image Computing and Computer-Assisted Intervention (MICCAI) Year of Publication: 2016 Link: https://arxiv.org/abs/1606.04797Key Focus: This paper introduces V-Net, a fully convolutional neural network designed for.. 2024. 11. 25.
[졸업 연구] Simple Diffusion Model에 Quantization 적용하기 안녕하세요, donyy입니다!올해 3월부터 시작한 졸업 연구도 어느덧 끝을 향해 달려가고 있습니다. 지난 스타트 학기 동안 Diffusion Model과 Quantization에 대한 기본적인 개념을 이해하기 위해 다양한 논문들을 리뷰했는데요! 이번 그로쓰 학기에는 그동안 학습한 내용을 바탕으로 구체적인 연구 주제를 설정하고, 실험을 통해 의미 있는 결론을 도출하는 과정에 집중하고 있습니다.따라서 이번 포스팅에서는 이론적인 부분보다는 실제 구현에 초점을 맞추어, Simple Diffusion Model에 양자화를 적용하는 과정을 코드 중심으로 설명하려고 합니다. 우선 양자화 적용 방법에 대해 설명하기 전에 저희 팀의 연구 주제와 내용을 간략히 소개하겠습니다.📃 연구 주제 및 개요연구 주제Layer-Ad.. 2024. 11. 19.
[논문 리뷰] U-Net: Convolution Networks for Biomedical Image Segmentation Paper DetailsTitle: U-Net: Convolutional Networks for Biomedical Image Segmentation Authors: Olaf Ronneberger, Philipp Fischer, Thomas Brox Conference: Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2015 Year of Publication: 2015 Link: https://arxiv.org/abs/1505.04597Key Focus: This paper presents U-Net, a convolutional neural network designed for biomedical image segmentati.. 2024. 11. 18.
[논문 리뷰] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Paper Details Title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Authors: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina ToutanovaConference: NAACL 2019Year of Publication: 2019Link: https://arxiv.org/abs/1810.04805Key Focus: This paper introduces BERT (Bidirectional Encoder Representations from Transformers), a novel language representation model that pr.. 2024. 11. 11.